Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 15: 1363190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654735

RESUMEN

Introduction: The pupillary light reflex (PLR) is the constriction of the pupil in response to light. The PLR in response to a pulse of light follows a complex waveform that can be characterized by several parameters. It is a sensitive marker of acute neurological deterioration, but is also sensitive to the background illumination in the environment in which it is measured. To detect a pathological change in the PLR, it is therefore necessary to separate the contributions of neuro-ophthalmic factors from ambient illumination. Illumination varies over several orders of magnitude and is difficult to control due to diurnal, seasonal, and location variations. Methods and results: We assessed the sensitivity of seven PLR parameters to differences in ambient light, using a smartphone-based pupillometer (AI Pupillometer, Solvemed Inc.). Nine subjects underwent 345 measurements in ambient conditions ranging from complete darkness (<5 lx) to bright lighting (≲10,000 lx). Lighting most strongly affected the initial pupil size, constriction amplitude, and velocity. Nonlinear models were fitted to find the correction function that maximally stabilized PLR parameters across different ambient light levels. Next, we demonstrated that the lighting-corrected parameters still discriminated reactive from unreactive pupils. Ten patients underwent PLR testing in an ophthalmology outpatient clinic setting following the administration of tropicamide eye drops, which rendered the pupils unreactive. The parameters corrected for lighting were combined as predictors in a machine learning model to produce a scalar value, the Pupil Reactivity (PuRe) score, which quantifies Pupil Reactivity on a scale 0-5 (0, non-reactive pupil; 0-3, abnormal/"sluggish" response; 3-5, normal/brisk response). The score discriminated unreactive pupils with 100% accuracy and was stable under changes in ambient illumination across four orders of magnitude. Discussion: This is the first time that a correction method has been proposed to effectively mitigate the confounding influence of ambient light on PLR measurements, which could improve the reliability of pupillometric parameters both in pre-hospital and inpatient care settings. In particular, the PuRe score offers a robust measure of Pupil Reactivity directly applicable to clinical practice. Importantly, the formulae behind the score are openly available for the benefit of the clinical research community.

2.
Phys Rev Lett ; 120(11): 110502, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601761

RESUMEN

Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

3.
Opt Express ; 25(22): 27475-27487, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092220

RESUMEN

We present a quantum fingerprinting protocol relying on two-photon interference which does not require a shared phase reference between the parties preparing optical signals carrying data fingerprints. We show that the scaling of the protocol, in terms of transmittable classical information, is analogous to the recently proposed and demonstrated scheme based on coherent pulses and first-order interference, offering comparable advantage over classical fingerprinting protocols without access to shared prior randomness. We analyze the protocol taking into account non-Poissonian photon statistics of optical signals and a variety of imperfections, such as transmission losses, dark counts, and residual distinguishability. The impact of these effects on the protocol performance is quantified with the help of Chernoff information.

4.
J Mod Opt ; 63(20): 2074-2080, 2016 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-27695200

RESUMEN

We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett.2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

5.
Nat Commun ; 7: 11411, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27125782

RESUMEN

Quantum metrology overcomes standard precision limits by exploiting collective quantum superpositions of physical systems used for sensing, with the prominent example of non-classical multiphoton states improving interferometric techniques. Practical quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial distinguishability of interfering photons. Here we introduce a method where appropriate design of the modal structure of input photons can alleviate deleterious effects caused by another, experimentally inaccessible degree of freedom. This result is accompanied by a laboratory demonstration that a suitable choice of spatial modes combined with position-resolved coincidence detection restores entanglement-enhanced precision in the full operating range of a realistic two-photon Mach-Zehnder interferometer, specifically around a point which otherwise does not even attain the shot-noise limit due to the presence of residual distinguishing information in the spectral degree of freedom. Our method highlights the potential of engineering multimode physical systems in metrologic applications.

6.
Opt Lett ; 40(7): 1540-3, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25831379

RESUMEN

We report the first observation of Hong-Ou-Mandel (HOM) interference of highly indistinguishable photon pairs with spatial resolution. Direct imaging of two-photon coalescence with an intensified sCMOS camera system clearly reveals spatially separated photons appearing pairwise within one of the two modes. With the use of the camera system, we quantified the number of pairs and recovered the full HOM dip yielding 96.3% interference visibility, as well as counted the number of coalesced pairs. We retrieved the spatial modes of both interfering photons by performing a proof-of-principle demonstration of a new, low-noise, high-resolution coincidence imaging scheme.

7.
Opt Express ; 23(26): 33087-98, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26831977

RESUMEN

A key ingredient in emerging quantum-enhanced technologies is the ability to coherently manipulate and detect superpositions of basis states. In integrated optics implementations, transverse spatial modes supported by multimode structures offer an attractive carrier of quantum superpositions. Here we propose an integrated dynamic mode converter based on the electro-optic effect in nonlinear channel waveguides for deterministic transformations between mutually non-orthogonal bases of spatial modes. We theoretically show its capability to demonstrate a violation of a Bell-type Clauser-Horne-Shimony-Holt inequality by measuring spatially mode-entangled photon pairs generated by an integrated photon pair source. The proposed configuration, numerically studied for the potassium titanyl phosphate (KTP) material, can be easily implemented using standard integrated optical fabrication technology.

8.
Opt Express ; 22(7): 8624-32, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24718233

RESUMEN

We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate (PPKTP) waveguide. We have used the recently demonstrated technique of controlling the spatial characteristics of the down-conversion process via intermodal dispersion to generate photon pairs in fundamental transverse modes, thus ensuring their spatial indistinguishability. Good overlap of photon modes within the pairs has been verified using the Hong-Ou-Mandel interferometer and the preparation of polarization entanglement in the Shih-Alley configuration, yielding visibilities consistently above 90%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...